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Using an approximation theory approach, we prove that a scaling function �
with suitable polynomial decay satisfies the Strang-Fix condition of order r # N if
and only if the elements of any prewavelet set [�&]& # E* with polynomial decay of
the same order have vanishing integral moments up to order r&1. An analogous
equivalence is established that does not involve any assumptions concerning decay;
this yields a new characterization of the rate of L2-approximation of (stationary
and nonstationary) multiresolution analyses in terms of a corresponding prewavelet
set. Furthermore, we show that the existence of a scaling function with polynomial
decay implies the existence of both an orthonormal scaling function and a wavelet
set with polynomial decay of the same order. Several known constructions of
wavelets and prewavelets are discussed in this respect. � 1997 Academic Press

1. INTRODUCTION

For many years authors have been studying the approximation proper-
ties of spaces generated by the integer translates of one or several given
functions ([45, 16, 17, 8, 3, 34, 27, 4, 19], just to name a few) and the
related problem of approximation by sampling series or, more generally, by
quasi-interpolation operators ([42, 41, 13, 40, 20, 26, 11, 12, 22, 9, 21],
among many others). An important role in this context plays the Strang-
Fix condition: A function � # L1(Rd ) satisfies the Strang-Fix condition of
order r for some r # N iff

D:�� (2j?)=0, j # Zd "[0], |:|<r; �� (0){0. (1.1)

To ensure that the Fourier transform �� is (r&1) times continuously dif-
ferentiable, we will need a suitable decay condition upon �. A sufficient
condition would be to require (1+& }&)r&1 � # L1(Rd ). In our setting it is
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useful to define the slightly more restrictive spaces L p
r&1(R

d ): For
1� p�� let L p(Rd ) be the space introduced by R. Q. Jia and C. A.
Micchelli in [28], which consists of all measurable functions f such that
�j # Zd | f ( } & j)| # L p([0, 1]d ). Note that L p(Rd )/L p(Rd ), 1� p��,
with L1(Rd )=L1(Rd ) [28]. Further,

L p
r (Rd ) :=[ f # L1(Rd ); (1+& }&)r f # L p(Rd )], 1� p��, r # N0 ,

(1.2)

see also [31]. If 1� p� p$�� and r, r$ # N0 with r�r$, then
Lp$

r (Rd )/L p
r (Rd ) and L p

r$(R
d )/L p

r (Rd ). Obviously, (1+& }&)r f #
L1(Rd ) for any function f # L p

r (Rd ), 1� p��; in fact the elements of
L1

r(Rd ) are characterized by this property. Note that any function f satis-
fying | f (x)|�K(1+&x&)&r&d&=, x # Rd, for some constant K and some
=>0 is an element of L p

r (Rd ). We will think of r as characterizing the
polynomial decay rate of f # L p

r (Rd ).
In this paper we will only be concerned with L2(Rd )-functions, so we will

choose our notations accordingly. The error of best approximation of a
function f # L2(Rd ) by a closed space V/L2(Rd ) will be denoted by

E( f, V ) := inf
g # V

& f &g&2 , f # L2(Rd ).

A closed space V/L2(Rd ) is called shift-invariant, if for any function f # V
its integer shifts f ( }& j), j # Zd, are also contained in V. We say the shift-
invariant space V is a finitely generated shift-invariant space (FSI ), if there
exists a finite set of functions [�&]& # I/L2(Rd ) such that V is the L2(Rd )-
closure of span [�&( }& j) ; j # Zd, & # I]. In case I consists of only one
element &, V is called a principal shift-invariant space (PSI ). We use the
notation V=S(�&). As we will be interested in the approximation
behaviour of the scaled versions of PSI's, it is convenient to use the notation

Sh(�) :={ f \ }
h+ ; f # S(�)=, h # R+ , � # L2(Rd ).

Analogously, Ph
� will denote the orthogonal projection to the space Sh(�).

A set of generators [�&]& # I for an FSI V is called a stable set of generators
if their integer shifts [�&( }& j)]j # Zd, & # I form a Riesz-basis for V, see
Section 2 for details. A special case is given by an orthonormal set of
generators, when [�&( }& j)]j # Zd, & # I forms an orthonormal basis for V.

Closely related to the theory of shift-invariant spaces is the notion of a
multiresolution analysis (MRA) introduced by S. Mallat [36]. An MRA is
a sequence [Vn]n # Z of closed subspaces of L2(Rd ) such that
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} } } /V&1/V0/V1/ } } } , (1.3)

,
n # Z

Vn=[0]; .
n # Z

Vn=L2(Rd ); (1.4)

For all n # Z, f # Vn if and only if f (2&n} ) # V0 ; (1.5)

V0 is a shift-invariant space; (1.6)

There exists a stable generator � for V0 . (1.7)

As C. de Boor, R. A. DeVore and A. Ron [6] show, the first condition
in (1.4) is always satisfied in the presence of (1.3), (1.5)�(1.7), while the
second is equivalent to �n # Z supp �� (2n } )=Rd up to a set of measure zero.
Therefore, if �� is continuous with �� (0){0, then (1.4) is satisfied automati-
cally.

The function � in (1.7) is called a scaling function for the MRA. Note
that with the notation introduced above, Vn=S 2&n

(�) for all n # Z. In the
present situation, some authors prefer to use the term stationary multi-
resolution analysis, while a general (non-stationary) MRA is a sequence
[Vn]n # Z of closed subspaces of L2(Rd ) satisfying (1.3) and Vn=S 2&n

(�n)
for some �n # L2(Rd ) having stable integer shifts, n # N. So in this case we
still require the space Vn to be a dyadic dilate of some PSI S(�n), but the
generators on different levels may be different. Sometimes even the stability
assumption is relaxed. Meaningful examples of a non-stationary MRA are
provided by exponential B-splines; see [4, 6]. Our main interest is in the
stationary case, so whenever we use the term ``MRA'' we mean a sequence
of spaces satisfying (1.3)�(1.7).

Given an MRA we may introduce the ``difference space'' Wn :=
Vn+1�Vn as the orthogonal complement of Vn in Vn+1 , n # Z. By (1.4)

L2(Rd )=Vn � �
k�n

Wk= �
k # Z

Wk , n # Z.

It is easily checked that W0 is a shift-invariant space. A stable set of gener-
ators for W0 is called a prewavelet set, an orthonormal set of generators for
W0 will be called a wavelet set. It was shown in [6] that any prewavelet
set necessarily consists of 2d&1 elements. It will be convenient to index a
prewavelet set by the set E* :=E"[0], where E :=[0, 1]d is the set of
vertices of the unit cube [0, 1]d.

In the instance of an MRA one can either use properties of a scaling
function or properties of a prewavelet set to characterize properties of the
MRA. As we have seen above, when using the scaling function � to
describe the appoximation behaviour of the spaces Vn=S 2&n

(�), n # Z,
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a suitable criterion is the Strang�Fix condition. As it turns out, a corre-
sponding criterion when using a prewavelet set is the vanishing moment
condition:

A finite set of functions [�&]& # I/L1
r&1(Rd ) is said to satisfy the vanishing

moment condition of order r # N iff

D:�� &(0)=0, |:|<r, & # I. (1.8)

Note that this is equivalent to �Rd u:�&(u) du=0, |:|<r, & # I.
Wavelets or prewavelets satisfying the vanishing moment condition were

used e.g. in [46, 21]to characterize the approximation behaviour of an
MRA or associated operators; G. Beylkin, R. Coifman and V. Rokhlin [2]
use wavelets with vanishing moments to compress large matrices.

Another concept that is widely used is regularity of a scaling function or
a prewavelet set [36, 37, 1]. A function is said to be r-regular for some
r # N, if it has rapid decay or at least polynomial decay of sufficiently high
order and continuous derivatives up to order r&1 with the same decay
properties. This concept is useful in that r-regularity of a scaling function
implies that it satisfies the Strang-Fix condition of order r ([37, p. 56],
[14, p. 158]), while r-regularity of a wavelet set implies that it satisfies the
vanishing moment condition of order r ([37, p. 93], [18, p. 153]). Further-
more, one can show that the existence of an r-regular scaling function
implies the existence of an r-regular wavelet set [24, 37]. So in the presence
of an r-regular scaling function one can work interchangeably with the
concept of a scaling function satisfying the Strang-Fix condition of order r or
with the concept of a wavelet set satisfying the vanishing moment condition
of order r. One purpose of this paper is to show that the two concepts are
equivalent even when no regularity is present, assuming only sufficient
decay of the functions involved to ensure that the corresponding Fourier
transforms are smooth enough to give meaning to (1.1) and (1.8). Some of
the implications involved have been treated by several authors under
various assumptions [18, 36, 37, 44, 43]; a complete treatment of the
univariate case is given in [10]. However, the method used there cannot be
used in the general multivariate situation since it relies on an explicit
representation of the wavelet of a specific form that is not known for the
general case. See Section 7 for more details. We therefore choose to use an
approximation theory approach.

The main result of this paper is the content of the following theorem.

Theorem 1.1. Let r # N, suppose � # L�
r (Rd ) is a scaling function for an

MRA. The following are equivalent:

� satisfies the Strang-Fix condition of order r; (1.9)
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There exists an orthonormal scaling function . # L�
r (Rd )

satisfying the Strang-Fix condition of order r; (1.10)

Any function f # V0 & L�
r (Rd ) satisfies

D:f� (2j?)=0, j # Zd"[0], : # Nd
0 , |:|<r; (1.11)

There exists a prewavelet set [|&]& # E*/L�
r (Rd ) satis-

fying the vanishing moment condition of order r; (1.12)

There exists a wavelet set [�&]& # E*/L�
r (Rd ) satisfying

the vanishing moment condition of order r; (1.13)

Any function f # W0 & L�
r (Rd ) satisfies

D:f� (4j?)=0, j # Zd, : # Nd
0 , |:|<r. (1.14)

Note that we postulate the existence of a scaling function � # L�
r (Rd ),

so that assertion (1.11) is not vacuous. We will show that the existence of
a scaling function � # L�

r (Rd ) implies the existence of a wavelet set
[�&]& # E*/L�

r (Rd ); hence assertion (1.14) is not vacuous either and in
fact trivially implies (1.13). We do not know at present whether the con-
verse is true, i.e., whether the existence of a prewavelet set [|&]& # E*/
L�

r (Rd ) implies the existence of a scaling function � # L�
r (Rd ). Some

results in this respect were obtained by P. G. Lemarie� [32, 33]; he shows
that in the univariate case the existence of a wavelet with compact support
implies the existence of a scaling function with compact support. We do
not know of any results concerning weaker decay properties, such as
exponential or polynomial decay. Therefore to formulate a meaningful
theorem we cannot renounce the a priori assumption � # L�

r (Rd ).
The proof of Theorem 1.1 will depend on the following theorem that will

be established in Section 3 and is an interesting result in itself. To better
understand its assumptions, note that for any function % # L2(Rd ), the
space S 1�2(%) is an FSI generated by the functions [%(2 }&+)]+ # E . As was
shown in [5, Corollary 3.4 and Theorem 3.5], this implies that choosing an
arbitrary function � # S1�2(%), then S 1�2(%) can be written as the orthogonal
sum of S(�) and |E |=2d (or less) PSI's. Thus the assumption
S1�2(%)�S(%)=�& # I S(|&) is made basically for notational reasons.

Theorem 1.2. Let r # N; suppose for % # L2(Rd ) there holds �n # Z S2&n
(%)

=L2(Rd ) and S(%)/S1�2(%). Further suppose that the orthogonal complement
of S(%) in S1�2(%) is an FSI that has an orthogonal decomposition into finitely
many PSI 's

S1�2(%)�S(%)= �
& # I

S(|&),
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with |& # L2(Rd ), & # I, I a finite index set. The following conditions are
equivalent:

& }&&r \1&
|%� | 2

�j # Zd |%� ( }&2?j)| 2+
1�2

# L�([&?, ?]d); (1.15)

There exists a constant K>0 such that

E( f, S2&n
(%))�K2&nr & f &r, 2 , f # W2

r (Rd ), n # Z; (1.16)

There exists a constant K� >0 such that

&P2&n

|&
f &2�K� 2&nr & f &r, 2 , f # W2

r(R
d ), n # Z, & # I; (1.17)

& }&&r ||̂& |
(�j # Zd ||̂&( }&2?j)| 2)1�2 # L�([&?, ?]d ) & # I. (1.18)

Condition (1.15) is closely related to the Strang-Fix condition but does
not require differentiability of the Fourier transform; in fact, if %� # C r

B(Rd ),
then (1.15) implies the Strang-Fix condition of order r. Under additional
assumptions (for example stability of shifts), the converse implication is
true as well. The connections between (1.15) and the Strang-Fix condition
are examined in detail in [4], see also Section 6. Similarly, condition (1.18)
is closely related to the vanishing moment condition; more precisely, in
case [|̂&]& # I/C r

B(Rd ), the vanishing moment condition of order r is
equivalent to (1.18), see Section 6. Thus one may consider the equivalence
of (1.15) and (1.18) established in Theorem 1.2 as an extension of the
equivalence of (1.9) and (1.12) in Theorem 1.1 to a more general setting
where no stability or decay assumptions are made. Theorem 1.2 further
establishes the connection between the generalized Strang-Fix condition
(1.15), the generalized vanishing moment condition (1.18) and the rate
of L2(Rd )-approximation of smooth functions by the ladder of spaces
[S2&n

(%)]n # Z .
The equivalence of (1.15) and (1.16) was basically proved by C. de Boor,

R. A. DeVore and A. Ron in [4]. More precisely they showed the equiv-
alence of (1.15) with

E( f, Sh(�))�Khr & f &r, 2 , f # W2
r (Rd ), h # R+. (1.19)

Choosing h :=2&n, n # Z, then (1.19) turns into (1.16). No argument is
used in their proof that would require a continuous parameter h.

The proof of the equivalence of (1.17) and (1.18) will proceed along the
same lines; it will make use of several results established in [4]. Note that
the denominator in (1.15) and (1.18) can only be zero if the numerator
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vanishes as well. As in [4], this possibility is taken care of by the conven-
tion that zero times any extended number is zero.

We would like to mention that similar characterizations of L�(Rd )-
approximation by an MRA were obtained by S. E. Kelly, M. A. Kon and
L. A. Raphael [29] in the context of ``radially bounded'' scaling functions
and wavelets.

The paper is organized as follows: Section 2 is concerned with notations.
In Section 3 a version of Theorem 1.2 for a non-stationary MRA is estab-
lished and a proof of Theorem 1.2 is given. Section 4 deals with some basic
facts about polynomial decay in an FSI; in particular we show that the
existence of a stable set of generators [%&]& # I/L p

r (Rd ) for some
2� p��, r # N0 , implies the existence of an orthonormal set of generators
with (at least) the same decay properties. In Section 5 we show that for any
MRA associated with a scaling function � # L p

r (Rd ), 2� p��, r # N,
there also exists a wavelet set [�&]& # E*/L p

r (Rd ). Several well-known
constructions of wavelets are discussed in this respect. The proof of
Theorem 1.1 is given in Section 6, while Section 7 contains some remarks
concerning our decay assumptions.

2. SOME NOTATIONS

Throughout the paper we will use standard multiindex notation: The
order of a multiindex :=(:1 , ..., :d) # Nd

0 is given by |:| :=:1+ } } } +:d ,
and for any two vectors x, y # Rd, xy :=x1 y1+ } } } +xd yd , and &x& :=
(xx)1�2. Also x: :=>d

&=1 x:&
& .

CB(Rd ) is the space of all continuous and bounded functions on Rd,
endowed with the supremum norm & f &B :=supx # Rd | f (x)|, and C2? is its
subspace of 2?-periodic functions, i.e., functions f # CB(Rd ) that are
invariant under translation by elements of 2?Zd. For r # N, C r

B(Rd ) is the
space of all functions f # CB(Rd ) which are r times differentiable on Rd with
D:f :=(�:1��x:1

1 ) } } } (�:d��x:d
d ) f # CB(Rd ) for all : # N0 , |:|�r, and Cr

2? is
its subspace of 2?-periodic functions.

For 1� p<� and a countable set I, l p(I) is the space of all complex-
valued sequences over I such that &a&p :=(�l # I |al |

p)1�p<�, and L p(Rd )
is the space of measurable functions f : Rd � C with finite norm & f &p :=
(�Rd | f (u)| p du)1�p<� (with the usual identifications). The Fourier trans-
form of f # L1(Rd ) is given by f� (v) :=(- 2?)&d �Rd f (u) e&ivu du, v # Rd,
while for f # L2(Rd ) it is defined by the L2(Rd )-limit function lim
i.m.M � �( f } /[&M, M]d)@, /[&M, M]d being the characteristic function of the
interval [&M, M]d. In both cases the Fourier transform will be denoted
by f� . For r # N, the Sobolev space Wr

2 is the space of all functions
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f # L2(Rd ) with & f &r, 2 :=&(1+& }&)r f� &2<�. The scalar product of two
functions f, g # L2(Rd ) is given by ( f, g) :=�Rd f (u) g(u) du.

For 1� p<�, L p
2? is the space of all 2?-periodic measurable functions

f on Rd such that & f &p :=(�[&?, ?]d | f (u)| p du)1�p<�. The Fourier coef-
ficients of f # L p

2? are given by f� (k) :=(2?)&d �[&?, ?]d f (u) e&iku du, k # Zd.
A set of generators [�&]& # I for an FSI V is called a stable set of gener-

ators if their integer shifts [�&( }& j)]j # Zd, & # I form a Riesz-basis for V, i.e.,
if for any function f # V there exists a unique sequence a=[aj, &]j # Zd, & # I #
l 2(Zd_I) such that f has a representation

f = :
& # I

:
j # Zd

aj, &�&( }& j),

and there exist constants A, B>0 such that for any sequence a # l 2(Zd_I),

A :
& # I

:
j # Zd

|aj, & | 2�" :
& # I

:
j # Zd

aj, &�&( }& j)"
2

2

�B :
& # I

:
j # Zd

|aj, & | 2.

Thus, in this case

V={ f = :
& # I

:
j # Zd

aj, &�&( }& j); a=[aj, &]j # Zd, & # I # l 2(Zd_I)=
or, taking Fourier transforms on both sides,

given a stable set of generators [�&]& # I for a FSI V, then

V={ f # L2(Rd ) ; f� = :
& # I

m&�� & for some m& # L2
2? , & # I=

(see [4]). We say a function � # L2(Rd ) has stable integer shifts (or ortho-
normal integer shifts), if � is a stable generator (or orthonormal generator)
for the PSI S(�). To get a handy characterization of these properties it is
useful to introduce the bracket product as the 2?-periodic function

� f, g� :=(2?)d :
j # Zd

f� ( }+2?j) ĝ( }+2?j), f, g # L2(Rd ). (2.2)

Then � f, g� # L1
2? for any two functions f, g # L2(Rd ). By Poisson's summa-

tion formula, the corresponding Fourier series is given by

� f, g�t :
j # Zd

( f, g( }+ j)) eij }.
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If f, g # L2(Rd ), then the sequence of Fourier coefficients [( f, g( }+ j))]j # Zd

is in l 1(Zd ), the series in (2.2) converges pointwise, and there holds the
pointwise equality

� f, g�(v)= :
j # Zd

( f, g( }& j)) e&ijv, v # Rd, f, g # L2(Rd), (2.3)

as was shown by R. Q. Jia and C. A. Micchelli [28]. (Note that our notation
differs from the one used in [28] in that we choose to denote by � f, g� the
trigonometric function associated with the sequence [( f, g( }+ j))]j # Zd

rather than the Laurent series.) It is easy to see that a function f # L2(Rd )
is orthogonal to S(g) for g # L2(Rd ) if and only if � f, g�#0 on Rd. Also,

a function � # L2(Rd ) has orthonormal integer shifts if
and only if ��, ��(v)=1 for all v # Rd, (2.4)

and (see [28])

� # L2(Rd ) has stable integer shifts if and only if
��, ��(v)>0 for all v # Rd. (2.5)

From (2.5) and the definition of the bracket product (2.2) it is easily seen
that

a function � # L1
r&1(Rd ) having stable integer shifts

satisfies the Strang-Fix condition of order r if and only if

D:�� (2j?)=0, j # Zd"[0], |:|<r, (2.6)

i.e., the assumption �� (0){0 in (1.1) can be dropped in this case.

3. RATES OF APPROXIMATION

In this section we will establish a version of Theorem 1.2 for the case of
a non-stationary MRA and then give a proof of Theorem 1.2. This section
may be thought of as an extension of some of the results established by
C. de Boor, R. A. DeVore and A. Ron in [4]. While they give characteriza-
tions of the approximation order of stationary and non-stationary MRAs
in terms of the generators, here a characterization in terms of ``generalized
prewavelets'' is added.

Theorem 3.1. Let r # N, suppose for [�n]n # Z/L2(Rd ) there holds

.
n # Z

S 2&n
(�n)=L2(Rd ) (3.1)
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and

S(�n)/S 1�2(�n+1), n # Z. (3.2)

Further suppose that for any n # Z there exist functions [|n, &]& # I/L2(Rd )
such that the orthogonal complement S 1�2(�n+1)�S(�n) can be decomposed
into an orthogonal sum of |I| PSI 's

S1�2(�n+1)�S(�n)= �
& # I

S(|n, &), (3.3)

where I is assumed to be a finite index set independent of n. The following
conditions are equivalent:

{(2&n+& }&)&r \1&
(2?)d |�� n | 2

��n ,�n� +
1�2

=n # Z

is bounded in L�([&?, ?]d); (3.4)

There exists a constant K>0 such that

E( f, S2&n
(�n))�K2&nr & f &r, 2 , f # W2

r(Rd ), n # Z; (3.5)

There exists a constant K� >0 such that

&P2&n

|n, &
f &2�K� 2&nr & f &r, 2 , f # W2

r (Rd ), n # Z, & # I; (3.6)

{(2&n+& }&)&r ||~ n, & |
�|n, & , |n, &� 1�2=n # Z

(3.7)

is bounded in L�([&?, ?]d ) for all & # I.

As in Theorem 1.2, the assumption (3.3) is made basically for notational
reasons. Concerning the equivalence of (3.4) and (3.5), let us quote the
following result established in [4]:

Result 3.1 [4]. Let r # N, A/R+ and [�h]h # A/L2(Rd ). There exists
a constant K>0 such that

E( f, Sh(�h))�Khr & f &r, 2 , f # W2
r(Rd ), h # A,

if and only if

{(h+& }&)&r \1&
(2?)d |�� h |2

��h , �h� +
1�2

=h # A

is bounded in L�([&?, ?]d ).
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Choosing A :=[2&n; n # Z], this obviously implies the equivalence of
(3.4) and (3.5). Result 3.1 was actually established in [4] for the case
A=R+ , but in the proof no argument is used that would require a con-
tinuous parameter.

To prove the equivalence of (3.6) and (3.7), we will establish a similar
relation for the |n, & , n # Z, & # I. The proof will be very similar to the
proof of Result 3.1 as given in [4]; we will utilize several results established
there. In particular, we will need the following fact which is one of the main
ingredients of the proof of Result 3.1 in [4]:

Result 3.2 [4]. Let r # N, A/R+ , and [4h]h # A/L�([&?, ?]d ).
There exists a constant K>0 such that

\|[&?, ?]d�h
| f� | 2 |4h(h } )| 2+

1�2

�Khr & f &r, 2 , f # W2
r (Rd ), h # A,

if and only if

[(h+& }&)&r 4h]h # A

is bounded in L�([&?, ?]d ).

Again, this fact is actually established for the case A=R+.

Theorem 3.2. Let r # N, A/R+ and [|h]h # A/L2(Rd ). There exists a
constant K>0 such that

&Ph
|h

f &2�Khr & f &r, 2 , f # W2
r (Rd ), h # A, (3.8)

if and only if

{(h+& }&)&r ||̂h |
�|h , |h�1�2= h # A

(3.9)

is bounded in L�([&?, ?]d ).

Proof. First note that for fixed h # A, ||̂h |��|h , |h� 1�2 is bounded by
(2?)&d by definition, therefore the expression in (3.9) is an element of
L�([&?, ?]d ) for any h # A/R+. Now let f # W2

r (Rd ), h # A. By a
change of variables it is easily verified that

E( f, Sh(|h))=hd�2E( f (h } ), S(|h)), (3.10)
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hence (by orthogonality)

&Ph
|h

f &2
2=& f &2

2&E( f, Sh(|h))2

=hd (& f (h } )&2
2&E( f (h } ), S(|h))2)

=hd &P|h
f (h } )&2

2 . (3.11)

Let /� C be the inverse Fourier transform of the characteristic function of the
cube [&?, ?]d, then

hd�2 &P|h
( f (h } ))&P|h

( f (h } ) V /� C)&2�hd�2 & f (h } ))& f (h } ) V /� C&2

=hd�2 &(1&/C) f (h } ) 7&2 .

As was shown in [4], the last expression is bounded by

hd�2 &(1&/C) f (h } ) 7&2�=f (h) hr & f &r, 2 ,

where =f (h) : R+ � R is a nonnegative function satisfying =f (h)�1 for all
h # R+ and limh � 0+

=f (h)=0. Therefore (3.8) is equivalent to

hd�2 &P|h
( f (h } ) V /� C)&2�Khr & f &r, 2 , f # W2

r(Rd ), h # A. (3.12)

We need to establish the equivalence of (3.12) and (3.9). But ( f (h } ) V /� C) 7=
/C f (h } ) 7 has support in [&?, ?]d; as was shown during the proof of
Theorem 2.20 in [4], this implies that

hd &P|h
( f (h } ) V /� C)&2

2

=hd(2?)d |
[&?, ?]d

| f (h } ) 7 (u)| 2 ||̂h(u)| 2��|h , |h�(u) du

=h&d (2?)d |
[&?, ?]d

| f� (u�h)| 2 ||̂h(u)| 2��|h , |h�(u) du

=(2?)d |
[&?, ?]d�h

| f� (x)| 2 ||̂h(hx)| 2��|h , |h�(hx) dx.

Choosing 4h :=|̂h��|h , |h�1�2 # L�([&?, ?]d ), h # A, the claim now
follows from Result 3.2. K

Proof of Theorem 3.1. In view of Result 3.1 and Theorem 3.2 we only
need to prove the equivalence of (3.5) and (3.6).

For n # Z, let Vn :=S2&n
(�n)=[ f (2n } ); f # S(�n)], and let

Wn :=[ f (2n } ); f # S1�2(�n+1)�S(�n)]
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be the orthogonal complement of S(�n) in S 1�2(�n+1), scaled by the factor
2n. From (3.3) it follows that Wn can be written as the orthogonal sum

Wn= �
& # I

S 2&n
(|n, &),

so in view of (3.1) we obtain the orthogonal decomposition

L2(Rd )=Vn� �
k�n

Wk=Vn � �
k�n \�

& # I

S2&k
(|k, &)+ , n # N.

Thus, for any n # Z and f # W2
r(Rd ),

E( f, S2&n
(�n))2=E( f, Vn)2= :

k�n

:
& # I

&P2&k

|k, &
f &2

2 .

In particular, &P2&n

|n, &
f &2�E( f, S 2&n

(�n)) for all n # Z, & # I, so that (3.5)
implies (3.6). On the other hand, if (3.6) is valid, then

E( f, S2&n
(�n))2�K� 2 & f &2

r, 2 :
k�n

:
& # I

2&2kr

=K� 2 & f &2
r, 2 2&2nr :

k�n

:
& # I

2&2(k&n) r,

f # W2
r (Rd ), n # Z,

yielding (3.5), since I is finite. K

In case all the �n , n # Z, agree, Theorem 3.1 immediately yields Theorem 1.2:

Proof of Theorem 1.2. Choosing �n :=%, n # Z, and |n, & :=|& , n # Z,
& # I, in Theorem 3.1 and letting n � �, we see that (3.4) is equivalent to
(1.15), and (3.7) is equivalent to (1.18). K

Theorem 1.2 is in particular applicable when % is a scaling function for
an MRA. It will be needed in Section 6 in the instance of an orthonormal
scaling function and a wavelet system:

Corollary 3.1. Let r # N, suppose . # L2(Rd ) is an orthonormal scaling
function for an MRA and [�&]& # E*/L2(Rd ) a corresponding wavelet set.
The following conditions are equivalent:

& }&&r (1&(2?)d |.̂| 2)1�2 # L�([&?, ?]d ); (3.13)

There exists a constant K>0 such that

E( f, Vn)�K2&nr & f &r, 2 , f # W2
r (Rd ), n # Z; (3.14)
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There exists a constant K� >0 such that

&Qn f &2�K� 2&nr & f &r, 2 , f # W2
r (Rd ), n # Z, (3.15)

where Qn is the orthogonal projection to Wn ;

& }&&r |�&@ | # L�([&?, ?]d ), & # E*. (3.16)

Proof. Identifying %=., Vn=S 2&n
(%), |&=�& , & # E*, &Qk f &2

2=
�& # E* &P2&k

�&
f &2

2 , k # Z, the proof of Corollary 3.1 follows immediately
from Theorem 1.2 and (2.4). K

4. POLYNOMIAL DECAY IN AN FSI

Theorem 1.1 also involves assertions about polynomial decay properties
of scaling functions and wavelets. Some of these will be dealt with in this
section. Suppose r # N0 . Following J. Lei [30], let us introduce the com-
mutative Banach-Algebra

Ar :={h # C2? ; &h&Ar
:= :

k # Zd

(1+&k&)r |h� (k)|<�= . (4.1)

With reference to [23], J. Lei [30] shows that the only algebra
homomorphisms mapping Ar to the complex plane C are the point func-
tionals, hence the spectrum of a function h # Ar agrees with its range. From
[23, p. 48, Theorem 1] he concludes:

For any function F analytic on a neighbourhood of the
range of h # Ar there holds F b h # Ar , where b denotes com-
position of functions. (4.2)

The main result of this section is given by the following theorem.

Theorem 4.1. Let r # N0 , 2� p��; suppose [%&]& # I/L p
r (Rd ) is a

stable set of generators for the FSI V. There exists an orthonormal set of
generators [.&]& # I/L p

r (Rd ) with

.̂&= :
+ # I

!+, &%� + , & # I, (4.3)

for some [!+, &]+, & # I/Ar .

This theorem was proved for the case r=0, p=� by R.-Q. Jia and
C. A. Micchelli [28]; they also showed that from a stable set of generators
with exponential decay one can derive an orthonormal set of generators
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with exponential decay. Polynomial decay of order r # N was considered by
J. Lei [30] in case of a PSI with p=�.

Lemma 4.1. (a) If f, g # L p
r (Rd ) for some 2� p��, r # N0 , then

� f, g� # Ar .

(b) Let f # L p
r (Rd ) and h # Ar for some 1� p��, r # N0 ; define

g # L2(Rd ) by ĝ :=f� } h. Then g # L p
r (Rd ).

Proof. Concerning (a), for k # Zd arbitrary let

K1(k) :=[x # Rd; &x+k&�&k&�2];

K2(k) :=[x # Rd; &x&�&k&�2].

Then K1(k) _ K2(k)=Rd, since &k&�&x+k&+&x&. Let 1�q�2 with
1�p+1�q=1. Then q� p, so g # L p

r (Rd )/Lq
r (Rd ), and f, g # L p

r (Rd )/
L p(Rd )/L2(Rd ). By (2.3)

:
k # Zd

(1+&k&)r |� f, g� 7(k)|

= :
k # Zd

(1+&k&)r |( f, g( }+k)) |

� :
k # Zd

(1+&k&)r \|K1(k)

2(1+&x+k&)r

(1+&k&)r | f (x) g(x+k)| dx

+|
K2(k)

2(1+&x&)r

(1+&k&)r | f (x) g(x+k)| dx+
�2 :

k # Zd
|

Rd
(1+&x+k&)r | f (x) g(x+k)| dx

+2 :
k # Zd

|
Rd

(1+&x&k&)r | f (x&k) g(x)| dx

=2 |
[0, 1]d

:
k # Zd

:
j # Zd

(1+&x+k& j&)r | f (x& j) g(x+k& j)| dx

+2 |
[0, 1]d

:
k # Zd

:
j # Zd

(1+&x&k& j&)r | f (x&k& j) g(x& j)| dx

�2 " :
k # Zd

(1+& }+k&)r | g( }+k)|"q " :
j # Zd

| f ( }& j)|"p

+2 " :
k # Zd

(1+& }&k&)r | f ( }&k)| "p " :
j # Zd

| g( }& j)|"q
<�,

by Ho� lder's inequality.
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Concerning (b), by the Fourier inversion theorem there holds

ĝ(v)=h(v) f� (v)= :
k # Zd

h� (k) eikv f� (v), v # Rd,

or

g= :
k # Zd

h� (k) f ( }+k).

Therefore

:
j # Zd

(1+&x& j&)r | g(x& j)|

= :
j # Zd

(1+&x& j&)r } :
k # Zd

h� (k) f (x& j+k }
� :

j # Zd

:
k # Zd

(1+&x& j&)r

(1+&x& j+k&)r (1+&k&)r

_(1+&k&)r |h� (k)| (1+&x& j+k&)r | f (x& j+k)|

�&h&Ar
:

j # Zd

(1+&x& j&)r | f (x& j)| a.e. on Rd,

since 1+&x& j&�(1+&x& j+k&)(1+&k&), x # Rd, k # Z. The right hand-
side, however, is in L p([0, 1]d ) by assumption, thus g # L p

r (Rd ). K

Proof of Theorem 4.1. Without loss of generality assume I=[1, ..., |I|].
R.-Q. Jia and C. A. Micchelli [28] show that V has an orthogonal decom-
position into |I| PSI's, i.e.,

V= �
& # I

S(.$&), (4.4)

where the functions .$& are defined iteratively by

.$1 :=%1 ;
(4.5)

.̂$n+1 :=%� n+1+ :
n

&=1

�%n+1 , .$&�
�.$& , .$&�

.$&@ , 1�n<|I|.

Moreover, the functions .$& have stable integer shifts for all & # I.
Let us show that [.$&]& # I/L p

r (Rd ). Suppose the claim has been proved
for [.$&]n

&=1 for some n<|I|. Fix & # [1, ..., n]. Then by Lemma 4.1(a),
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�.$& , .$&� # Ar . Furthermore, �.$& , .$&�(x){0 for all x # Rd by (2.5). From
(4.2) it follows that �.$& , .$&� &1 # Ar as well. Again by Lemma 4.1(a),
�%n+1, .$&� # Ar , hence �%n+1, .$&���.$& , .$&� # Ar . Thus .$n+1 # L p

r (Rd ) by
Lemma 4.1(b).

Note that by induction there exist !$+, & # Ar such that

.̂$&= :
+ # I

!$+, & %� + , & # I. (4.6)

Finally, setting

.̂& :=
.̂$&

�.$& , .$&�1�2 , & # I,

then �.& , .&�=1, & # I; therefore by (2.4) the .& have orthonormal integer
shifts. By Lemma 4.1, �.$& , .$&� # Ar/C2? , so from (2.1) and (2.5) we have
S(.&)=S(.$&), & # I. From (4.4) we conclude that [.&]& # I is an ortho-
normal set of generators for V. By the same argument as above
�.$& , .$&� &1�2 # Ar ; hence .& # L p

r (Rd ) and by (4.6) .̂&=�+ # I !+, &%� + with
!+, & :=!$+, &��.$& , .$&�1�2 # Ar , +, & # I. K

5. SCALING FUNCTIONS AND WAVELETS
WITH POLYNOMIAL DECAY

In this section we will show that for any MRA associated with a scaling
function % # L p

r (Rd ), 2� p��, there exists a wavelet set [�&]& # E*/
L p

r (Rd ).
Let % # L p

r (Rd ), 2� p��, be a scaling function for an MRA [Vn]n # Z .
By Theorem 4.1 (for the PSI case) there also exists an orthonormal scaling
function . # L p

r (Rd ). We are trying to find functions �& # V1 & L p
r (Rd ),

& # E*, such that [.] _ [�&]& # E* is an orthonormal set of generators for
the shift-invariant space V1 . Let us for simplicity write

�0 :=.. (5.1)

Since the half-shifts of 2d�2.(2 } ) provide an orthonormal basis for V1 ,
for any & # E there exists a sequence [a&

j ]j # Zd # l 2(Zd ) such that

�&= :
j # Zd

a&
j .(2 }&j) (5.2)
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or, equivalently,

�� &= :
j # Zd

a&
j e&ij } �22&d.̂( } �2)=2&dq&( } �2) .̂( } �2), & # E, (5.3)

with

q& := :
j # Zd

a&
j e&ij } # L2

2? , & # E. (5.4)

This series can be rewritten in the following way:

q&( } �2)= :
+ # E

e&i+ }�2 \ :
j # Zd

a&
++2j e&ij }+= :

+ # E

e&i+ } �2p&
+ , +, & # E, (5.5)

where

p&
+ := :

j # Zd

a&
++2j e&ij } # L2

2? , +, & # E. (5.6)

Thus (5.3) turns into

�� &=2&d :
+ # E

e&i+ } �2p&
+.̂( } �2), & # E. (5.7)

For later use let us note that since . # L p
r (Rd ) is an orthonormal scaling

function, by (2.4) this implies for all v # Rd

1=�., .�(v)

=(2?)d :
+ # E

:
k # Zd

|.̂(v&2+?&4k?)| 2

= :
+ # E

2&2d } :
+$ # E

e&i+$(v&2+?)�2p0
+$ (v) }

2

(2?)d :
k # Zd

|.̂(v�2&+?&2k?)|2

=2&2d :
+$, +* # E

p0
+$(v) p0

+*(v) ei(+*&+$) v�2 :
+ # E

(&1)(+$++*) +

=2&d :
+$ # E

| p0
+$(v)| 2.

Here to get from line 2 to line 3 we have used (2.4), while the last equation
is a consequence of :+ # E (&1)(+$++*) +=2d$+$, +* . Thus,

:
+ # E

2&d | p0
+(v)| 2=1, v # Rd. (5.8)
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Furthermore, since [2d�2.(2 }& j)]j # Z is an orthonormal basis for V1 , the
coefficients in (5.2) are given by

a&
j =2d(�& , .(2 }& j)) , & # E, j # Zd,

so we can write alternatively

p&
+= :

j # Zd

2d(�& , .(2 }&2j&+)) e&ij }

=2d��& , .(2}&+)�, +, & # E. (5.9)

It is easily verified that . # L p
r (Rd ) implies .(2 }) # L p

r (Rd ). Therefore
Lemma 4.1 together with (5.7) and (5.9) yield �& # L p

r (Rd ) if and only if
p&

+ # Ar , +, & # E. In particular, by the choice (5.1) of �0 ,

p0
+=2d�., .(2 }&+)� # Ar , + # E. (5.10)

On the other hand, R.-Q. Jia and C. A. Micchelli [28, Theorem 7.1] show
that [�&]& # E is an orthonormal generating set for V1 if and only if the
matrix (2&d�2p&

+)&, + # E is unitary almost everywhere on [&?, ?]d . Thus our
problem is reduced to finding functions p&

+ # Ar , + # E, & # E*, such that the
matrix (2&d�2p&

+)&, + # E is unitary a.e. (hence everywhere by continuity) on
Rd, where the first column is determined by (5.10). By (5.8), the problem
is meaningful. In dimension d=1, E=[0, 1], so we only have to choose p1

0

and p1
1 . The standard choice is p1

0=&p0
1, p1

1=p0
0 . The resulting matrix is

unitary by (5.8); moreover (5.10) implies p1
0 , p1

1 # Ar , so the problem is
solved. Note that in view of (5.5), this choice leads to

q1(v)=e&ivq0(v+?), v # R. (5.11)

In higher dimensions the situation is more complicated. S. D.
Riemenschneider and Z. Shen [38, 39] show that in certain instances a
construction similar to the univariate case is possible: Let ' : E [ E be
a permutation satisfying

'(0)=0 and ('(&)+'(+))(&++) is odd for any &, + # E
with &{+. (5.12)

If the orthonormal scaling function . is skew symmmetric about
c. # 1�2Zd, i.e.,

.(c.+x)=.(c.&x), x # Rd,
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then the choice

q& :=ei'(&) }{q0( }+?&),
q0( }+?&),

if 2&c. is even,
if 2&c. is odd,

& # E*, (5.13)

yields a wavelet set for the corresponding MRA. This corresponds to the
choice

p&
['(&)++]=(&1)+& {

ei�2[('(&)&+)+['(&)&+]] }p0
+

if 2&c. is even,
ei�2[('(&)++)+['(&)&+]] }p0

+

if 2&c. is odd,

+ # E, & # E*,

where for : # Zd we denote by [:] the representative of : mod 2Zd lying
in E. (In particular, :&[:] # 2Zd for all : # Zd.) Combining this with
(5.10) we find p&

+ # Ar for all + # E, & # E*, so these wavelets also possess the
desired decay properties. This construction was originally devised to derive
compactly supported wavelets from a compactly supported orthonormal
scaling function; S. D. Riemenschneider and Z. Shen [38] show that in
addition these wavelets are skew-symmetric or skew-antisymmetric, an
important property in filtering theory.

As S. D. Riemenschneider and Z. Shen [38] show, the assumption
c. # 1�2Zd is not restrictive, since the center of any skew-symmetric scaling
function must necessarily be a half-integer. In [38, 39] they give functions
' satisfying (5.12) for dimension d�3. In case d=1 and 2c. odd, choosing
'(0)=0 and '(1)=1, their construction (5.13) obviously agrees with the
univariate one (5.11) considered above up to a translation. They also show
that for d>3 such a permutation ' does not exist, so this construction is
only possible in low dimensions. For arbitrary dimension d, let us therefore
follow the more abstract approach which was used by K. Gro� chenig [24]
to show that the existence of an r-regular scaling function implies the
existence of an r-regular wavelet set; see also [37, p. 90] and [43].

Consider the map P : [&?, ?]d � C2d
defined by

P+ :=2&d�2p0
+ , + # E.

By (5.8), P can actually be considered as a map to the (real) unit sphere
S2d+1&1/R2d+1

. Now assume r�1, then P is continuously differentiable
and d<2d+1&1; therefore the image

K :=P([&?, ?]d )
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has (2d+1&1)-measure zero, hence cannot be the whole of S 2d+1&1 (see e.g.
[25, pp. 68�69]). Up to a rotation we may assume (&1, 0, ..., 0) � K. Since
K is compact, there exists some 0<s<1 such that Re p0

0(v)�&s for all
v # [&?, ?]d . For some =>0, consider the matrix

P� =( p~ &
+)+, & # E :=\

P0

P+1

b
P+2d&1

&P� +1

=

0

} } }

. . .

&P� +2d&1

0

= +
(with some ordering +0=0, +1 , ..., +2d&1 of E ). This matrix has determinant

det P� ==2d&2 \=P0+ :
+ # E*

|P+ | 2+ .

This expression can only vanish in a point v where P0(v) is real and non-
positive. In such a point, however, with (5.8) and the definition of P,

=P0(v)+ :
+ # E*

|P+(v)| 2==P0(v)+1&|P0(v)| 2�&=s+1&s2,

which is non-zero for 0<=<1�s&s. Using Gram�Schmidt orthogonaliza-
tion without changing the first column results in a unitary matrix

P=2&d�2( p&
+)+, & # E ,

whose every entry can be written in the form 2&d�2p&
+=F &

+ b P, where F &
+ is

a complex valued function real analytic on an open neighbourhood U of K
(considered here as a subset of C2d

), i.e., locally expandable into a power
series in (z1 , z� 1 , z2 , z� 2 , ..., z2d , z� 2d ) on U. Our problem is solved if we can
show that p&

+ # Ar , +, & # E. This, however, is an immediate consequence of
the following lemma.

Lemma 5.1. Let r # N0 , [h+]+ # E/Ar ; define H : Rd � C2d by H+ :=h+ ,
+ # E, and let C :=H(Rd )=H([&?, ?]d ) be the common spectrum of the
functions h+ , + # E. Further let f be a complex-valued function real analytic
on an open neighbourhood of C. Then f b H # Ar .

The proof follows directly from [23, Sect. 13, Satz 1, p. 100], taking into
account that Ar is closed under complex conjugation and that the only
algebra homomorphisms mapping Ar to the complex plane C are the point
functionals.
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We have proved the following:

Theorem 5.1. Let r # N, 2� p��, and � # L p
r (Rd ) be a scaling func-

tion for an MRA. Then there exists a wavelet set [�&]& # E*/L p
r (Rd). If

dimension d=1 or if d�3 and � is a skew-symmetric orthonormal scaling
function, then we can also allow r=0.

Let us discuss some alternative possibilities for the construction of a
wavelet set in L p

r (Rd ). J. Sto� ckler [43] shows that in case .̂ is real and
nonnegative, then p0

0 is strictly positive as well and the above construction
of wavelets can be based upon the matrix

P� ( p~ &
+)+, & # E :=2&d�2 \

p0
0

p0
+1

b
p0

+2 d&1

0
1

0

} } }

. . .

0
0

1+ (5.15)

instead of (5.14). By the same argument as above, this construction will
lead to a wavelet set [�&]& # E* # L p

r (Rd ). Another possibility to find a
unitary matrix P having 2&d�2(p0

0 , p0
+1

, ..., p0
+2d&1

)tr as its first column is
given by de Boor, Ho� llig, and Riemenschneider [7, p. 131]: For 0{w # C2d

let H(w) be the Householder matrix defined by

w0

H(w) :=I&
2

&w&2 \ b + (w0 , ..., w+2 d&1
).

w+2 d&1

They show that the matrix defined by

P(v) :=H(P(v)+_( p0
0) e0) \

&_( p0
0)

0
b
0

0
1

0

} } }

. . .

0
0

1+ (5.16)

satisfies the above requirements, where e0 is the first unit vector in C2d
and

_(z) :={z�|z|,
1,

if z # C"[0]
if z=0.

As mentioned above, if .̂ is real and nonnegative, then p0
0(v)>0 for all

v # Rd; therefore in this case _( p0
0)#1, and it is easily checked that every

entry of the matrix P given by (5.16) is of the form p&
+=F &

+ b P, with F &
+ a

67WAVELETS WITH VANISHING MOMENTS



File: 640J 306323 . By:DS . Date:24:06:97 . Time:08:14 LOP8M. V8.0. Page 01:01
Codes: 2752 Signs: 1807 . Length: 45 pic 0 pts, 190 mm

complex valued function real analytic on an open neighbourhood of K,
hence p&

+ # Ar for all +, & # E, and the corresponding wavelet set belongs to
L p

r (Rd ).
In view of the orthogonalization procedure in Theorem 4.1 it would of

course be sufficient to find a prewavelet set [�&]& # E*/L p
r (Rd ), 2� p��.

S. D. Riemenschneider and Z. Shen [38] show that if d�3, ' : E [ E is
a permutation satisfying (5.12) and . is a (not necessarily orthonormal)
scaling function skew-symmetric about some c. # 1�2Zd, then choosing

q& :=ei'(&) }�., .�( }+?&){q0( }+?&), if 2&c. is even,
q0( }+?&), if 2&c. is odd,

& # E*, (5.17)

the functions [�&]& # E* given by (5.3) form a prewavelet set. Note that this
is basically the same construction as (5.13), since �., .�#1 if . has
orthonormal integer shifts by (2.4). As in the orthonormal case, the resulting
prewavelets are skew-symmetric or skew-antisymmetric, and they have
compact support if . is compactly supported. By arguments similar to the
orthonormal case but involving the scaling function dual to . one can
show that . # L p

r (Rd ) for some r # N0 , 2� p�� implies [�&]& # E*/
L p

r (Rd ). We will not go into the details here.
A construction similar to (5.17) but using a different permutation ' is

given by C. K. Chui, J. Sto� ckler and J. D. Ward [15].

6. STRANG-FIX CONDITION VERSUS VANISHING MOMENTS

In this section the proof of Theorem 1.1 will be established.

Proof of Theorem 1.1. Let r # N. We will first establish the implications
(1.9) O (1.10) O (1.11) O (1.9). Suppose � satisfies the Strang-Fix condition
of order r. Then

D:�� (2j?)=0, j # Zd"[0], |:|<r.

By Theorem 4.1 there exists an orthonormal scaling function . # L�
r (Rd )

and a function ! # Ar/C r
2? such that .̂=!�� . By the Leibniz rule it follows

that

D:.̂(2j?)=0, j # Zd"[0], |:|<r, (6.1)

so . satisfies the Strang-Fix condition of order r by (2.6), and (1.10)
follows.
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Now suppose (1.10) is valid; let . # L�
r (Rd ) be an orthonormal scaling

function satisfying the Strang-Fix condition of order r, let f # V0 & L�
r (Rd )

be arbitrary. By the orthonormality of the integer shifts of . we have

f = :
j # Zd

( f, .( }& j)) .( }& j).

Taking Fourier transforms on both sides yields

f� = :
j # Zd

( f, .( }& j)) e&ij } .̂=� f, .� .̂.

But � f, .� # Ar/C r
2? by Lemma 4.1, hence by the Leibniz rule f satisfies

(1.11). In view of (2.6), the implication (1.11) O (1.9) is obvious.
Let us now show the equivalence of (1.10) and (1.13). From Theorem 4.1

we know that there exists an orthonormal scaling function . # L�
r (Rd ), so

that Theorem 5.1 ensures the existence of a wavelet set [�&]& # E*/
L�

r (Rd ). To prove the equivalence of (1.10) and (1.13) we will show that
. satisfies the Strang-Fix condition of order r if and only if [�&]& # E*

satisfies the vanishing moment condition of order r.
Observe first that [�&]& # E*/L�

r (Rd ) implies �� & # C r
B(Rd ), & # E*, so

the vanishing moment condition

D:�� &(0)=0, |:|<r, & # E*, (6.2)

is equivalent to

& }&&r |�� & | # L�([&?, ?]d ), & # E*. (6.3)

By Corollary 3.1, (6.3) in turn is equivalent to the existence of a constant
K>0 such that

E( f, Vn)�K2&nr & f &r, 2 , f # W2
r (Rd ), n # Z. (6.4)

So we need to establish the equivalence of (6.4) and (6.1). Suppose (6.4) is
valid. Now . is an orthonormal scaling function, so by (2.4) �., .�#1,
and by Corollary 3.1,

((2?)d �j # Zd, j{0 |.̂( }&2?j)| 2)1�2

& }&r =
(�., .�&(2?)d |.̂| 2)1�2

& }&r

# L�([&?, ?]d ). (6.5)

By continuity this implies that .̂ has a zero of order r at 2?j for any
j # Zd"[0], or (6.1). By (2.6), . satisfies the Strang-Fix condition of order r.

69WAVELETS WITH VANISHING MOMENTS



File: 640J 306325 . By:DS . Date:24:06:97 . Time:08:14 LOP8M. V8.0. Page 01:01
Codes: 2554 Signs: 1503 . Length: 45 pic 0 pts, 190 mm

Unfortunately, (6.1) does not as easily imply (6.5), so Corollary 3.1 is of
no help for the converse implication. This, however, is a classical problem
that has been studied by many authors under various assumptions (see e.g.
[42, 45, 16, 17, 8, 3, 35, 27, 31, 9], among many others). Best adapted to
our situation is the following result by J. Lei [30], which we state here in
a slightly modified form:

Result 6.1 [30]. Let r # N, suppose . # L�
r (Rd ) is an orthonormal

scaling function satisfying the Strang-Fix condition of order r. There exists
a constant K>0 such that

& f &P2&n

. f &2�K2&nr max
|:|=r

&D:f &2 , f # W2
r (Rd ), n # Z.

Lei actually considers L p(Rd )-approximation for 1� p��. The above
result is in fact established in the proof of [30, Theorem 2.4]; rather than
the Strang-Fix condition, J. Lei assumes . # W�

r&1(Rd ) with derivatives
D:. # L�

r&1, |:|<r, and then proceeds to deduce the Strang-Fix condition
of order r.

By Result 6.1, assuming that . satisfies the Strang-Fix condition of order
r (6.1), then

E( f, Vn)�K2&nr max
|:|=r

&D:f &2 , f # W2
r(Rd ), n # Z.

But

max
|:|=r

&D:f &2=max
|:|=r

& }: f� &2�& f &r, 2 , f # W2
r(Rd ),

hence (6.4) holds. This completes the proof of (1.10) � (1.13).
It remains to verify (1.13) O (1.14) O (1.12) O (1.13). Suppose (1.13) is

valid, i.e., there exists a wavelet set [�&]& # E*/L�
r (Rd ) satisfying the

vanishing moment condition; let f # W0 & L�
r (Rd ). By orthonormality,

f admits the expansion

f = :
& # E*

:
j # Zd

( f, �&( }& j)) �&( }& j)

or, taking Fourier transforms on both sides,

f� = :
& # E*

:
j # Zd

( f, �&( }& j)) e&ij } �� &= :
& # E*

� f, �&� �� & .
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But � f, �&� # Ar/C r
2? , & # E*, by Lemma 4.1, so using the Leibniz rule we

conclude

D:f� (0)=0, |:|<r. (6.6)

Furthermore, f # W0/V1 , hence f ( } �2) # V0 . We have already established
the equivalence of (1.9), (1.10), (1.11) and (1.13), therefore by (1.11)

0=D: _ f \ }
2+&

7

(2j?)=2d D:f� (4j?), j # Zd"[0], |:|<r. (6.7)

Combining this with (6.6), we obtain (1.14).
The implication (1.14) O (1.12) is trivial, since we knew beforehand that

there exists a wavelet set [�&]& # E*/L�
r (Rd ), and this is in particular

a prewavelet set. Finally, (1.12) implies (1.13) by Theorem 4.1 and the
Leibniz rule. K

7. SOME REMARKS CONCERNING DECAY ASSUMPTIONS

In Theorem 1.1, to prove the equivalence of (1.9)�(1.11) or (1.12)�(1.14),
respectively, we only need the Fourier transform of the functions involved
to be (r&1) times continuously differentiable, so in view of the results in
Section 4 we might replace L�

r (Rd ) by L�
r&1(Rd ). The only place where

the higher order decay is needed is when establishing the equivalence of
(1.11) and (1.13). More precisely, the difficulty lies in the use of Result 6.1
and in the fact that a relationship between (3.13) and the Strang-Fix condi-
tion, or (3.16) and the vanishing moment condition, can only be established
if the corresponding Fourier transforms are in Cr

B(Rd ). Thus our method of
proof does not allow us to reduce the decay rate r of the functions considered.

In some instances, however, this can be done using a different method.
For example, in the univariate case, the standard approach is to use the
explicit representation

�� (v)=1�2q1(v�2) .̂(v�2)=1�2e&iv�2 q0(v�2+?) .̂(v�2), v # R, (7.1)

(compare Section 5), where . is an orthonormal scaling function and q0 is
defined by the relation

.̂(v)=1�2q0(v�2) .̂(v�2), v # R, (7.2)
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or

q0(v)= :
j # Zd

2(., .(2 }&j)) e&ijv

=2�., .(2} )�(2v)+e&iv2�., .(2 }&1)�(2v), v # R.

Thus by Lemma 4.1, if . # L�
r&1(R), then q0 # Ar&1/Cr&1

B (R). Using
only the Leibniz rule and the representation (7.2), one can show that .
satisfies the Strang-Fix condition of order r if and only if

D:q0(?)=0, : # N0 , 0�:<r. (7.3)

Using again only the Leibniz rule and the fact that .̂(0){0 (which is true
for any scaling function in L2(R), see [28]), one concludes from (7.1) that
(7.3) is equivalent to the vanishing moment condition of order r for the
wavelet �. Several authors have used this approach to prove at least some
of the implications involved under various assumptions ([18, 36, 44]; a
complete treatment under very weak assumptions is given in [10].

In higher dimensions the equivalence of (7.3) and the Strang-Fix condi-
tion upon . is still valid; of course (7.3) must now be replaced by

D:q0(&?)=0, 0�|:|<r, & # E*. (7.4)

The equivalence of (7.4) and the vanishing moment condition of order r
for a wavelet set, however, can only be established by this method if
a wavelet set with a representation of type (7.1) is known. Recall from
Section 5 that in case . is a skew-symmetric orthonormal scaling function
and dimension d�3, such a wavelet set can in fact be constructed. Thus in
this case and in the univariate case, L�

r (Rd ) can be replaced by L�
r&1(Rd )

in Theorem 1.1. The general case, however, cannot be treated in this way.
There does exist a more direct method to show at least that (1.11) implies
(1.13), which does not utilize any results from approximation theory. It is
used e.g. by Y. Meyer [37, p. 93] in the instance of a scaling function with
rapid decay. This method also works under weaker decay assumptions, but
one does need .̂ # C r

B(Rd ), so it would not help us to reduce the decay rate r.
We would also like to point out that every statement in this paper

remains true, if in the definition of L�
r (Rd ) in (1.2) we would replace

``boundedness of �j # Zd | f (x& j)| almost everywhere on Rd '' by ``bounded-
ness on all of Rd.'' This may be of interest when dealing with continuous
functions.
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